
Phased Array System Toolbox™ 1
Getting Started Guide

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Phased Array System Toolbox™ Getting Started Guide

© COPYRIGHT 2011 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
April 2011 Online only Revised for Version 1.0 (R2011a)

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Contents

Getting Started with Phased Array System
Toolbox Software

1
Overview . 1-2
Product Overview . 1-2
Conventions . 1-3
Required Products . 1-4
MATLAB® Compiler Support . 1-4

Phased Array Systems

2
System Overviews . 2-2
Phased Array System Overview . 2-2
Radar Phased Array Overview . 2-4

Radar Data Cube, Units, and Physical Constants

3
Radar Data Cube . 3-2
Fast Time Samples . 3-3
Slow Time Samples . 3-4
Spatial Sampling . 3-4
Space-Time Processing . 3-5
Organizing Data in the Radar Data Cube 3-5

Units of Measure and Physical Constants 3-7
Units of Measure . 3-7
Physical Constants . 3-8

iii

System Objects in the Phased Array System
Toolbox

4
System Objects . 4-2
What are System Objects? . 4-2
Advantages of Using System Objects 4-2
Creating a System Object . 4-3
Changing System Object Properties 4-3
Modes . 4-5
Changing Properties While Running System Objects 4-5

Processing Data with System Objects 4-6
What are System Object Methods? 4-6
The Step Method . 4-6
Step Method Examples . 4-6
Common System Object Methods . 4-8
Custom System Object Methods . 4-9

Basic Radar Workflow

5
Overview of Basic Workflow . 5-2

Building The Basic Radar Workflow Model 5-3

iv Contents

1

Getting Started with
Phased Array System
Toolbox Software

1 Getting Started with Phased Array System Toolbox™ Software

Overview

In this section...

“Product Overview” on page 1-2

“Conventions” on page 1-3

“Required Products” on page 1-4

“MATLAB® Compiler Support” on page 1-4

Product Overview
Phased Array System Toolbox™ provides algorithms and tools for the design,
simulation, and analysis of phased array signal processing systems. These
capabilities are provided as MATLAB® functions and MATLAB System
objects. The system toolbox includes algorithms for waveform generation,
beamforming, direction of arrival estimation, target detection, and space-time
adaptive processing. The system toolbox lets you build monostatic, bistatic,
and multistatic architectures for a variety of array geometries. You can
model these architectures on stationary or moving platforms. Array analysis
and visualization tools help you evaluate spatial, spectral, and temporal
performance. The system toolbox lets you model an end-to-end phased array
system or use individual algorithms to process acquired data.

Key features of this product include:

• Algorithms available as MATLAB functions and MATLAB System objects

• Monostatic, bistatic, and multistatic phased array system modeling

• Array analysis and 3D visualization; physical array modeling for uniform
linear arrays, uniform rectangular arrays, and arbitrary conformal arrays
on platforms with motion

• Broadband and narrowband digital beamforming functions, including
MVDR/Capon, LCMV, time delay, Frost, time delay LCMV, and subband
phase shift

• Space-time adaptive processing algorithms, including displaced phase
center array (DPCA), adaptive DPCA, sample matrix inversion (SMI)
beamforming, and angle-Doppler response visualization

1-2

Overview

• Direction of arrival algorithms, including MVDR, ESPRIT, Beamscan, Root
MUSIC, and monopulse tracking

• Waveform synthesis functions for pulsed CW, linear FM, stepped FM, and
staggered PRF signals, and waveform visualization tools for ambiguity
function and matched filter response

• Algorithms for TVG, pulse compression, coherent and non-coherent
integration, CFAR processing, plotting ROC curves, and estimating range
and Doppler

Conventions
The Phased Array System Toolbox uses consistent conventions with respect to
units of measure, data representations, and coordinate systems. Familiarity
with these conventions will facilitate use of the toolbox functionality. The
following sections provide brief descriptions of these conventions with links to
more detailed explanations where needed.

Complex-valued Baseband Signals
In phased array signal processing, it is common to shift the frequency content
of a waveform to support effective radiation and propagation in the medium.
This is accomplished by modulating a baseband signal with nonzero spectral
magnitudes in the vicinity of zero frequency to create a bandpass signal with
nonzero spectral magnitudes centered around a carrier frequency. Typically,
the bandwidth of the baseband signal is small compared to the carrier
frequency resulting in a narrowband signal. To process returned signals, the
receiver demodulates the bandpass signal to the baseband. The demodulation
involves local oscillators both in phase and 90 degrees out of phase with the
modulating carrier frequency. This results in in-phase (I) and quadrature (Q)
baseband signals, or channels. For processing, it is convenient to create a
complex-valued baseband signal by assigning the I channel to be the real part
and the Q channel to be the imaginary part, I+jQ. The Phased Array System
Toolbox uses the complex-valued baseband representation to represent
both transmitted and received signals. While actual phased array systems
transmit real-valued signals and create complex-valued baseband signals at
the receiver, utilizing a complex-valued representation at all stages allows
you to accurately model the impact of system gains, losses, and interference
on the received signal samples.

1-3

1 Getting Started with Phased Array System Toolbox™ Software

Data Organization of Baseband Signals
Space-time processing of the complex-valued baseband samples is efficiently
implemented by organizing the data in a three-dimensional matrix. See Radar
Data Cube for an explanation of how the software organizes space-time data.

Spatial Coordinates
Representation of position in three dimensions is a fundamental aspect
of array signal processing. The Phased Array System Toolbox specifies
rectangular and spherical coordinates as column vectors with respect to both
global and local origins. See “Coordinate Systems and Motion Modeling” for a
detailed explanation of the conventions used in the toolbox.

Physical Quantities
The Phased Array System Toolbox almost exclusively uses the International
System of Units (SI) for units of measure. In addition, there are physical
constants declared and used in calculations. See “Units of Measure and
Physical Constants” on page 3-7 for a detailed explanation of toolbox
conventions.

Supported Data Types
The Phased Array System Toolbox only supports double-precision data types.
Inputting a data type that is not double precision can produce an error or
incorrect results.

Required Products
The Phased Array System Toolbox requires the Signal Processing Toolbox™
and the DSP System Toolbox™ software. You must install these products to
use the Phased Array System Toolbox software.

MATLAB Compiler Support
Version 1.0 of the Phased Array System Toolbox software does not support the
MATLAB® Compiler™. You cannot compile any functionality in the toolbox.

1-4

2

Phased Array Systems

2 Phased Array Systems

System Overviews

In this section...

“Phased Array System Overview” on page 2-2

“Radar Phased Array Overview” on page 2-4

Phased Array System Overview
Phased array systems use the spatial and temporal characteristics of
propagating space-time wavefields to extract information about the source, or
sources of the wavefields. By processing data collected over a spatiotemporal
aperture using an array of sensors, you can significantly improve performance
over a single sensor in a number of areas including, but not limited to:

• signal detectability

• spatial selectivity

• source identification and localization

The following figure shows a high-level overview of a phased array system:

Source
Array

Receiver
Array

Target

Environment

Environment

Waveform

Result

Phased array systems in diverse applications, such as radar, sonar, medical
ultrasonography, medical imaging, and cellular phone communication share
many common elements including:

• Source Array — The source array transmits a waveform through an
environment. The waveform often consists of repeating pulses modulated

2-2

System Overviews

by a carrier frequency. Depending on the application, the wave may be an
acoustic (mechanical), or electromagnetic wave. The source array is often
electronically or mechanically steered to transmit in preferred directions.

• Environment— The medium in which the waveform travels to and from
the target affects a number of system parameters including propagation
speed, absorption loss, and wave dispersion.

• Target — The target reflects a portion of the incident waveform energy
from the source array. Some percentage of the reflected energy is
backscattered in the direction of the receiver array. In some applications,
the target is the source of the waveform energy.

• Receiver Array — The receiver array collects energy from the target
representing the signal along with external and internal sources of noise.
The receiver implements algorithms to improve the signal-to-noise ratio
and extract space-time information from the signal.

At the receiver, phased array systems implement algorithms to extract
temporal and spatial information about the source, or sources of energy.
The following figure shows a high-level overview of array signal processing
algorithms common to a significant number of phased array systems.

Receiver
Array

Temporal
Processing

Spatial
Processing

Space-Time
Processing

Brief descriptions of the three categories are:

• Temporal Processing — Phased arrays often operate in poor
signal-to-noise (SNR) ratios. Employing temporal integration and
matched filtering improves the SNR. Knowing the propagation speed of
the transmitted waveform and measuring the time it takes for a pulse to
travel to and from a target allows phased array systems to estimate range.

2-3

2 Phased Array Systems

Performing Fourier analysis on a time series of pulses enables the phased
array to extract Doppler information from moving targets.

• Spatial Processing— Combining weighted information across multiple
sensor elements with a known geometry enables phased array systems
to spatially filter incoming waveforms. Phased arrays can also estimate
the direction of arrival and the number of source waveforms incident on
the array.

• Space-Time Processing — Simultaneously analyzing both spatial
and temporal information enables phased array systems to produce
joint angle-Doppler measurements of incident waveforms. Space-time
processing enables phased array systems to distinguish moving targets
from stationary targets when the phased array is in motion.

Radar Phased Array Overview
The following figure presents an overview of a radar phased array system.
The figure is an expanded version of the high-level overview in “Phased Array
System Overview” on page 2-2.

transmit radiate

propagate

transmitter

collect

propagate
waveform

radiator
using
phased array

environment

target

environment

environment

receiverradar
data cube

collector
using
phased array

jammer

reflect

propagate

receive

In order to exploit the advantages of array processing, it is important to
understand how to model and optimize the performance of each component
and operation in a phased array system. The Phased Array System Toolbox

2-4

System Overviews

provides models for all the components of the phased array system illustrated
in the preceding figure from signal synthesis to signal analysis.

The toolbox supports models in which the transmitter and receiver are
collocated or spatially separated. The toolbox also supports models in which
both the targets and phased array are in motion.

Waveform Synthesis
The Phased Array System Toolbox supports the design of rectangular,
linear frequency-modulated, and linear stepped-frequency pulsed waveforms
with phased.RectangularWaveform, phased.LinearFMWaveform, and
phased.SteppedFMWaveform.

Physical Components and Environment Modeling
The Phased Array System Toolbox enables you to simulate the physical
components of a phased array system including:

• Transmitter— You can specify the transmitter peak power, gain, and loss
factor. See phased.Transmitter for details.

• Antenna elements — You can create antenna elements with isotropic
response patterns or antenna elements with user-specified response
patterns over the entire range of azimuth ([-180,180] degrees) and elevation
([-90,90] degrees) angles. See phased.IsotropicAntennaElement,
phased.CosineAntennaElement, and phased.CustomAntennaElement for
details.

• Microphone elements — For acoustic applications, you
can model an omnidirectional or custom microphone
with phased.OmnidirectionalMicrophoneElement or
phased.CustomMicrophoneElement.

Phased arrays — There are System objects for three phased array
geometries:

- Uniform linear array (ULA) — phased.ULA enables you to model a
uniform linear array consisting of sensor elements with isotropic or
custom radiation patterns. You can specify the number of elements and
element spacing.

2-5

2 Phased Array Systems

- Uniform rectangular array — phased.URA enables you to model a
uniform rectangular array of sensor elements with isotropic or custom
radiation patterns. You can specify the number of elements and element
spacing along two orthogonal axes.

- Conformal array — phased.ConformalArray enables you to model a
conformal array of sensor elements with isotropic or custom radiation
patterns by specifying the antenna element positions and normal
directions.

• Radiator — You can model waveform radiation through an antenna
element, microphone, or array with the phased.Radiator object.

• Environment- You can model the propagation of an electromagnetic
(EM) wave in free space with phased.FreeSpace. You can simulate
one-way or two-way propagation of a narrowband EM signal by applying
range-dependent attenuation and time delays, or phase shifts.

• Target — You can simulate a target with a specified radar cross section
(RCS) using phased.RadarTarget. phased.RadarTarget supports both
nonfluctuating and fluctuating (random) models of the RCS. The toolbox
supports a family of random models based on the chi-square distribution
known as Swerling target models.

• Interference— phased.BarrageJammer enables you to simulate wideband
interference with a user-specified radiated power.

• Signal collection— You can simulate far-field or near-field narrowband
and wideband signal reception from specified directions using
phased.Collector and phased.WidebandCollector.

• Receiver — phased.ReceiverPreamp enables you to simulate the gain,
loss factor, and internal noise characteristics of your receiver.

Array Signal Processing
For the processing of received data, the Phased Array System Toolbox
supports a wide-range of array signal processing algorithms. The following
figure presents a more detailed view of the general concepts discussed in
“Phased Array System Overview” on page 2-2.

2-6

System Overviews

Receiver

DOA

Beamforming

Matched
Filtering

Time-varying
Gain

STAP

Coherent
Integration

Non-coherent
Integration

NP
Detector

Range
Detection

Pulse
Doppler

The preceding figure only presents an overview of the array signal processing
operations supported by the Phased Array System Toolbox software. The
figure does not purport to show predetermined orders of operation. For
example, direction of arrival (DOA) estimation, beamforming, and space-time
adaptive processing (STAP) often follow operations that improve the
signal-to-noise ratio such as matched filtering. You can implement the
supported algorithms in the manner best-suited to your application.

• Matched Filtering — You can perform matched filtering on your data
with phased.MatchedFilter. See “Matched Filtering” for examples.

2-7

2 Phased Array Systems

• Time-varying gain — You can equalize the power level of the
incident waveform across samples from different ranges using
phased.TimeVaryingGain. phased.TimeVaryingGain compensates for
signal power loss due to range.

• Beamforming and direction-of-arrival (DOA) estimation — The
Phased Array System Toolbox provides a number of algorithms for
beamforming and direction of arrival estimation. See “Beamformers” and
“Direction of Arrival (DOA)” for a list of supported beamforming and DOA
algorithms. You can find example workflows for each in “Beamforming”
and Direction of Arrival (DOA) Estimation.

• Detection — The Phased Array System Toolbox has a number of utility
functions to implement and evaluate Neyman-Pearson detectors using both
coherent and noncoherent pulse integration.

The toolbox also provides routines for evaluating detector performance
through the construction of receiver operating characteristic curves.

To model fluctuating noise characteristics, phased.CFARDetector object
adaptively estimates the noise characteristics from the data to maintain a
constant false-alarm rate.

You can find example workflows in the “Detection” section of the User’s
Guide.

• Pulse Doppler— The Phased Array System Toolbox has utility functions
for estimating Doppler shift based on speed (speed2dop) and to estimate
speed based on the Doppler shift (dop2speed. You can implement
pulse-Doppler processing by using the spectrum estimation algorithms in
the Signal Processing Toolbox on the slow-time data. See “Radar Data
Cube” on page 3-2 for an explanation of the slow-time data.

See “Doppler Shift and Pulse-Doppler Processing” for examples of Doppler
processing.

To calculate the joint angle-Doppler response of the input data, use
phased.AngleDopplerResponse.

Example workflows for computing the angle-Doppler response can be found
in “Angle-Doppler Response”.

• Space-time adaptive processing — You can implement displaced
phase center antenna techniques with phased.DPCACanceller and
phased.ADPCACanceller. phased.STAPSMIBeamformer implements an

2-8

System Overviews

adaptive beamformer by calculating the beamformer weights using the
estimated space-time interference covariance matrix.

See “Space-Time Adaptive Processing (STAP)” for examples.

2-9

2 Phased Array Systems

2-10

3

Radar Data Cube, Units,
and Physical Constants

• “Radar Data Cube” on page 3-2

• “Units of Measure and Physical Constants” on page 3-7

3 Radar Data Cube, Units, and Physical Constants

Radar Data Cube

In this section...

“Fast Time Samples” on page 3-3

“Slow Time Samples” on page 3-4

“Spatial Sampling” on page 3-4

“Space-Time Processing” on page 3-5

“Organizing Data in the Radar Data Cube” on page 3-5

The radar data cube is a convenient way to conceptually represent space-time
processing. To construct the radar data cube, assume that pre-processing
converts the RF signals received from multiple pulses across multiple array
elements to complex-valued baseband samples. Arrange the complex-valued
baseband samples in a three-dimensional M-by-N-by-L matrix. Many of
the radar signal processing operations supported by the Phased Array
System Toolbox correspond to processing one-dimensional subvectors, or
two-dimensional submatrices of the radar data cube.

The following figure shows the organization of the radar data cube in the
Phased Array System Toolbox. Subsequent sections explain each of the
dimensions and which aspect of space-time processing they represent.

3-2

Radar Data Cube

Fa
st

 T
im

e

Spatial Sampling

Slow Tim
e

Fast Time Samples
Consider each M-by-1 subvector of the radar data cube. Each of these M-by-1
column vectors represent complex-valued baseband samples from one pulse at
one array element. Because pulse bandwidths can be on the order of a few
hundred kHz, you require high sampling rates to avoid aliasing. This is the
basis for the designation fast time.

The fast time dimension is also referred to as the range dimension. If the
two-way range to a target from the phased array is 2R, the difference in
range, ΔR, represented by two samples acquired with sampling interval, T is:

R
cT


2

3-3

3 Radar Data Cube, Units, and Physical Constants

Each sample in the fast time dimension represents an incremental change in
range of ΔR in range. For this reason, fast time samples are also referred to
as range bins, or range gates.

Pulse compression is an example of a signal processing operation performed
on the fast time samples.

Slow Time Samples
Consider each M-by-L submatrix of the radar data cube. In the submatrix
there are M row vectors with dimension 1-by-L. Each of these row vectors
contains complex-valued baseband samples from L different pulses
corresponding to the same range bin. There is a M-by-L matrix for each of the
N array elements. The sampling interval between the L samples is the pulse
repetition interval (PRI). Typical PRIs are much longer than the fast-time
sampling interval. This is the motivation for designating samples taken
across multiple pulses as slow time.

Processing data in the slow time dimension allows you to estimate the Doppler
spectrum at a given range bin.

The Nyquist criterion applies equally to the slow-time dimension. The
reciprocal of the PRI is the pulse repetition frequency (PRF). The PRF gives
the width of the unambiguous Doppler spectrum.

Spatial Sampling
Phased arrays consist of multiple array elements. Consider each M-by-N
submatrix of the radar data cube. Each column vector consists of M fast-time
samples for a single pulse received at a single array element. The N column
vectors represent the same pulse sampled across N array elements. The
sampled data in the N column vectors is a spatial sampling of the incident
waveform. Analysis of the data across the array elements allows you to
examine the spatial frequency content of each received pulse.

It is also possible to spatially sample a wavefield by mechanically steering
a single antenna, but the more common scenario is to sample the wavefield
by multiple array elements. The Nyquist criterion for spatial sampling
dictates that array elements must not be separated by more than one half the
wavelength of the carrier frequency.

3-4

Radar Data Cube

Beamforming is a spatial filtering operation that combines data across the
array elements to selectively enhance and suppress wavefields incident on
the array from particular directions.

Space-Time Processing
Space-time adaptive processing operates on the two-dimensional
angle-Doppler data for each range bin. Consider the M-by-N-by-L radar
data cube. Each of the M samples is data from the same range. This
range is sampled across N array elements, and L PRIs. Collapsing the
three-dimensional matrix at each range bin into N-by-L submatrices allows
the simultaneous two-dimensional analysis of angle of arrival and Doppler
frequency.

Organizing Data in the Radar Data Cube
If you have M complex-valued baseband data samples collected from L pulses
received at N sensors, you can organize your data in a format compatible
with the Phased Array System Toolbox conventions using permute. After
processing your data, you can convert back to your original data cube format
with ipermute.

Reordering the Data Cube

Assume you have a data set consisting of 200 samples per pulse for ten pulses
collected at 6 sensor elements. Assume that your data are organized as a
6-by-10-by-200 matrix. Simulate this data structure using complex-valued
white Gaussian noise samples.

OrigData = randn(6,10,200)+1j*randn(6,10,200);

The first dimension of OrigData is the number of sensors (spatial sampling),
the second dimension is the number of pulses (slow-time), and the third
dimension contains the fast-time samples. This format is not compatible with
the radar data cube conventions of the Phased Array System Toolbox.

The Phased Array System Toolbox expects the first dimension to contain the
fast-time samples, the second dimension to represent individual sensors in
the array, and the third dimension to contain the slow-time samples.

3-5

3 Radar Data Cube, Units, and Physical Constants

To reorganize OrigData in a format compatible with the toolbox conventions,
enter:

NewData = permute(OrigData,[3 1 2]);

The preceding line of code moves the third dimension of OrigData to be the
first dimension of NewData. The first dimension of OrigData becomes the
second dimension of NewData and the second dimension of OrigData becomes
the third dimension of NewData. This results in NewData being organized
as fast-time samples-by-sensors-by-slow-time samples. You can now process
NewData with the Phased Array System Toolbox software.

After you process your data, you can use ipermute to return your data format
to the original structure.

Data = ipermute(NewData,[3 1 2]);
% Data is equal to OrigData

3-6

Units of Measure and Physical Constants

Units of Measure and Physical Constants

In this section...

“Units of Measure” on page 3-7

“Physical Constants” on page 3-8

Units of Measure
The Phased Array System Toolbox almost exclusively uses SI base and derived
units to measure physical quantities. The following table gives the physical
quantity and corresponding SI base and derived units used in the software.

Physical Quantity SI Base/Derived Unit Abbrevation

Frequency hertz Hz

Length meter m

Power watt w

Time second s

Temperature kelvin k

The Phased Array System Toolbox does not provide any utilities for converting
the preceding SI base or derived units to other systems of measurement.

Angles
Angles are an exception to the use of SI base and derived units. All angles
in the Phased Array System Toolbox software are specified in degrees. See
“Rectangular and Spherical Coordinates” for an explanation of the angles
used in the software. There are two utility functions for converting angles
from radians to degrees and degrees to radians: radtodeg and degtorad.

Decibels
In order to accurately model and simulate phased array systems, it is
necessary to account for gains and losses in power incurred at various stages
of processing. In the Phased Array System Toolbox software, these gains and

3-7

3 Radar Data Cube, Units, and Physical Constants

losses are specified in decibels (dB). Signal to noise ratios (SNRs) and the
receiver noise figure are also expressed in dB. A power of P watts in dB is:

10 10log ()P

There are two utility functions for converting between dB and power: db2pow
and pow2db, and two utility functions for converting between magnitude and
dB: db2mag and mag2db.

Physical Constants
In modeling and simulating phased array systems, you require values for a
number of physical constants. For example, the distribution of thermal noise
power per unit bandwidth depends on the Boltzmann constant. To measure
Doppler shift and range in radar, you have to specify a value for the speed of
light. The following table summarizes the three physical constants specified
in the toolbox. See physconst for additional information.

Description Value

The speed of light in a vacuum 299,792,458 meters/second. Most
commonly denoted by c.

The Boltzmann constant relating
energy to temperature. 1 38 10 23. x − joules/degree kelvin.

Most commonly denoted by k.

Mean radius of the Earth 6,137,000 meters

3-8

4

System Objects in the
Phased Array System
Toolbox

• “System Objects” on page 4-2

• “Processing Data with System Objects” on page 4-6

4 System Objects in the Phased Array System Toolbox™

System Objects

In this section...

“What are System Objects?” on page 4-2

“Advantages of Using System Objects” on page 4-2

“Creating a System Object” on page 4-3

“Changing System Object Properties” on page 4-3

“ Modes” on page 4-5

“Changing Properties While Running System Objects” on page 4-5

What are System Objects?
System objects are MATLAB object-oriented implementations of algorithms.
They extend MATLAB by enabling you to model dynamic systems represented
by time-varying algorithms. System objects are well integrated into the
MATLAB language, regardless of whether you are writing simple functions,
working interactively in the command window, or creating large applications.

In contrast to MATLAB functions, System objects automatically manage
state information, data indexing, and buffering, which is particularly useful
for iterative computations or stream data processing. This enables efficient
processing of long data sets. For general information on MATLAB objects,
see Object-Oriented Programming. For a brief description of the advantages
of using System objects over procedural functions see “Advantages of Using
System Objects” on page 4-2.

Advantages of Using System Objects
System objects use a minimum of two commands to process data: a constructor
to create the object and the step method to run data through the object. This
separation of declaration from execution lets you create multiple, persistent,
reusable instances of an object, each with different settings. Also, using the
System object API avoids repeated input validation and verification, allows
for easy use within a programming loop, and improves overall performance.

4-2

System Objects

These advantages make System objects particularly well suited for processing
streaming data, where segments of a continuous data stream are processed
iteratively. This ability to process streaming data provides the advantage of
not having to hold large amounts of data in memory. Use of streaming data
also allows you to use simplified programs that use loops efficiently.

Creating a System Object
To use a System object, you must first create the object. To create an object,
use the syntax:

ObjectHandle = phased.ObjectName

For example, to create a phased.LinearFMWaveform object, enter:

HLFMwav = phased.LinearFMWaveform

HLFMwav is an object handle. System objects are handle class objects. For
more detailed information on handle class objects, see “Comparing Handle
and Value Classes”.

Changing System Object Properties
Each System object has one or more properties, which determine how the
object operates. To view the property names and their current values, enter
the object handle at the command prompt without a semicolon. The object
property names and values are also displayed in the command window when
you create a System object without a terminating semicolon.

hURA = phased.URA('Size',[2 2],'ElementSpacing',0.5)

When you create an object using ObjectHandle = phased.ObjectName, the
properties are assigned their default values. If a property is not read-only, you
can modify the property values. To modify property values, you can either:

• Change the property values after construction using the
ObjectHandle.Property syntax.

• Assign the property values at construction using name-value pairs. You
can enter name-value pairs in any order.

4-3

4 System Objects in the Phased Array System Toolbox™

• Assign the property values using value-only arguments at construction in
the specified order. The reference page for each object describes which
value-only arguments, if any, the object supports.

The following examples create phased.LinearFMWaveform objects with the
same property values.

Change property values after construction.

HLFMwav = phased.LinearFMWaveform
% Change the value of the SweepBandwidth property
HLFMwav.SweepBandwidth = 2e5
% Change the value of the SweepDirection property
HLFMwav.SweepDirection = 'down'

Use name-value pairs at construction.

HLFMwav = phased.LinearFMWaveform('SweepBandwidth',2e5,...
'SweepDirection','down');

The following code creates phased.URA objects with the same property values.

Change property values after construction.

hURA = phased.URA
hURA.Size = [2 3]
hURA.ElementSpacing = 0.25

Use name-value pairs at construction.

hURA = phased.URA('Size',[2 3],'ElementSpacing',0.25)
% equivalent to
% hURA = phased.URA('ElementSpacing',0.25,'Size',[2 3]);

Use value-only arguments in a supported order. See phased.URA for a
description of the value-only syntax.

hURA = phased.URA([2 3],0.25)

4-4

System Objects

To obtain command-line help on an object property, enter help
phased.ObjectName/PropertyName at the MATLAB command prompt. For
example:

help phased.LinearFMWaveform/SweepBandwidth

System object properties are also documented on the class reference page in
the help documentation. See phased.LinearFMWaveform for an example.

Modes
System objects are in one of two modes: unlocked or locked. After you create
an instance of an object and until it starts processing data, that object is in
unlocked mode. You can change any of its properties as desired.

When the object begins processing data, it initializes and is locked. The
typical way in which an object becomes locked is when the step method is
called on that object. To determine if an object is locked, use the isLocked
method. When the object is locked, you cannot change the number of inputs,
the number of outputs, or the value of any property unless the property is
tunable. These restrictions allow the object to maintain states and allocate
memory appropriately. See “Changing Properties While Running System
Objects” on page 4-5 for information on tunable and nontunable properties.

Changing Properties While Running System Objects
When an object is in locked mode, it is processing data and you can only
change the values of properties that are tunable. To determine if a particular
System object property is tunable, see the corresponding object reference
page or use a command of the form:

help phased.FrostBeamformer/DiagonalLoadingFactor

where DiagonalLoadingFactor is the property name. For information on
locked and unlocked modes, see “ Modes” on page 4-5.

Changing the data type or dimension of a nontunable property value is not
allowed without first calling the release method.

4-5

4 System Objects in the Phased Array System Toolbox™

Processing Data with System Objects

In this section...

“What are System Object Methods?” on page 4-6

“The Step Method” on page 4-6

“Step Method Examples” on page 4-6

“Common System Object Methods” on page 4-8

“Custom System Object Methods” on page 4-9

What are System Object Methods?
After you create a System object and assign property values, you use object
methods to process data or obtain information from or about the object. All
methods that are applicable to an object are described in the reference pages
for that object. System object method names begin with a lowercase letter and
class and property names begin with an uppercase letter. The syntax for
using methods is methodname(ObjectHandle, ...), such as step(H,...)
where the ellipsis denotes a place holder for additional input arguments.
For example, see the reference page for the plotResponse method of the
uniform linear array, phased.ULA.

The Step Method
The step method is the key System object method. You use step to process
data using the algorithm defined by the object. The step method performs
other important tasks related to data processing, such as initialization and
handling object states. Every System object has its own customized step
method, which is described in detail on the step reference page for that object.
For more information about the step method and other available methods,
see the descriptions in “Common System Object Methods” on page 4-8.

Step Method Examples
This section presents examples of using the step method. The action of
the step method differs for each object. See the object reference page for a
detailed description.

4-6

Processing Data with System Objects

Calculate the steering vector for a uniform linear array
Construct a uniform linear array (ULA) consisting of 8 elements spaced 0.5
meters apart.

hULA = phased.ULA(8,0.5);

Construct the steering vector for the specified ULA. First construct the
steering vector object with the ULA as the value of the SensorArray property.

hSV = phased.SteeringVector('SensorArray',hULA,...
'PropagationSpeed',physconst('lightspeed'));

Calculate the steering vector assuming an operating frequency of 1 GHz and
azimuth and elevation angles of 45 degrees.

SteerVec = step(hSV,1e9,[45 45]);

Calculate the effect of propagating a signal in free space
This example uses two different step methods. The first step method is
associated with the phased.LinearFMWaveform object and the second step
method is associated with the phased.Freespace object.

Construct a linear FM waveform with a pulse duration of 50 microseconds, a
sweep bandwidth of 100 kHz, an increasing instantaneous frequency, and a
pulse repetition frequency (PRF) of 10 kHz..

hFM = phased.LinearFMWaveform('SampleRate',1e6,'PulseWidth',5e-5,...
'PRF',1e4,'SweepBandwidth',1e5,'SweepDirection','Up',...
'OutputFormat','Pulses','NumPulses',1);

Obtain the waveform using the step method. Note that the input to the step
method is a handle to a phased.LinearFMWaveform object.

Sig = step(hFM);

Construct a free space object with a propagation speed equal to the speed of
light, an operating frequency of 3 GHz, and a sample rate of 1 MHz. The free
space object is constructed to model one way propagation.

hFS = phased.FreeSpace('PropagationSpeed',physconst('lightspeed'),...
'OperatingFrequency',3e9,'TwoWayPropagation',false,'SampleRate',1e6)

4-7

4 System Objects in the Phased Array System Toolbox™

Calculate the effect on the waveform of one-way propagation in free space from
coordinates [0;0;0] to [500; 1e3; 20] and plot the results for comparison.

PropSig = step(hFS,Sig,[0; 0; 0],[500; 1e3; 20]);
% compare the original signal to the propagated waveform
t = unigrid(0,1/hFS.SampleRate,length(Sig)*1/hFS.SampleRate,'[)');
subplot(211)
plot(t,real(Sig)); title('Original Signal (real part)');
ylabel('Amplitude');
subplot(212)
plot(t,real(PropSig)); title('Propagated Signal (real part)');
xlabel('Seconds'); ylabel('Amplitude');

Common System Object Methods
All Phased Array System Toolbox System objects have the following methods,
each of which is described in a method reference page associated with each
specific object.

4-8

Processing Data with System Objects

Method Description

step Processes data using the algorithm defined by the object.
As part of this processing, it initializes needed resources,
returns outputs, and updates the object states. After
you call the step method, you cannot change any input
specifications (i.e., dimensions, data type, complexity).
During execution, you can change only tunable properties.
The step method returns regular MATLAB variables.

Example: Y = step(H,X)

release release releases any special resources allocated by the
object, such as file handles and device drivers, and unlocks
the object. See “ Modes” on page 4-5.

clone Creates another object with the same property values

isLocked Returns a logical value indicating whether the object is
locked. See “ Modes” on page 4-5.

getNumInputs Returns the number of inputs expected by the step
method. This number varies for an object depending on
whether any properties enable additional inputs.

getNumOutputs Returns the number of outputs expected from the step
method. This number varies for an object depending on
whether any properties enable additional outputs.

Additionally, select System objects have a reset method. For example, both
phased.Platform and phased.RadarTarget have reset methods.

Custom System Object Methods
In addition to common System object methods, each System object in the
Phased Array System Toolbox may have one or more methods specific to its
functionality. You can find these methods listed on the object reference page
with links to the method reference page. You can view command-line help
for these objects by entering help phased.ObjectName.method. Examples
include:

The plotResponse method for phased.URA.

4-9

4 System Objects in the Phased Array System Toolbox™

hURA = phased.URA([4,4],0.5); %Construct URA
plotResponse(hURA,3e8,physconst('lightspeed'));

The collectPlaneWave method for phased.ULA.

hULA = phased.ULA(8,0.5); %Construct ULA
Fc = 3e8; % Carrier Frequency 300 MHz
t = (0:1e-3:1)';
Sig = cos(2*pi*200*t); %Incident signal
% Obtain the plane wave response at the 8 array elements
RecSig = collectPlaneWave(hULA,Sig,[10;25],Fc);

The bandwidth and plot methods for phased.LinearFMWaveform

HLFMwav = phased.LinearFMWaveform('SampleRate',50e6,'PulseWidth',1e-6,'Sw
BWidth = bandwidth(HLFMwav);
plot(HLFMwav)

4-10

5

Basic Radar Workflow

• “Overview of Basic Workflow” on page 5-2

• “Building The Basic Radar Workflow Model” on page 5-3

5 Basic Radar Workflow

Overview of Basic Workflow
The scenario and code examples contained in “Building The Basic Radar
Workflow Model” on page 5-3 are intended as an introduction to the
fundamental workflow utilized in the Phased Array System Toolbox. The
example is intentionally simplified in order to familiarize you with the basic
theme that extends throughout the toolbox. You will find the core elements of
this workflow in all the demos, reference page examples, and Phased Array
System Toolbox User’s Guide examples.

The basic workflow consists of:

• constructing objects that represent the physical components and algorithms
of your model. The objects have modifiable properties that enable you to
parameterize your model. The object properties are described in both the
command line help and on the object reference page.

• using the object’s step method to perform the action of your
parameterized object on inputs. The action of step is specific to each
algorithm. For example, the step method for the linear FM waveform,
phased.LinearFMWaveform, performs a different action than the step
method for the steering vector, phased.SteeringVector. The specific
action and syntax of each step method are documented in the command
line help and on the reference page. You can access the documentation for
an object’s step method by entering:

>>doc phased.ObjectName/step

at the MATLAB command prompt, or via the hyperlink in the Methods
section of the object’s reference page.

5-2

Building The Basic Radar Workflow Model

Building The Basic Radar Workflow Model
Basic Radar Workflow Scenario

The basic toolbox workflow is illustrated with the following scenario: Assume
you have a single isotropic antenna operating at 4 GHz. Assume the antenna
is located at the origin of your global coordinate system. There is a target
with a nonfluctuating radar cross section of 0.5 square meters initially located
at [7000; 5000; 0]. The target moves with a constant velocity vector of
[-15;-10;0]. Your antenna transmits ten rectangular pulses with a duration
of 1 microsecond at a pulse repetition frequency (PRF) of 5 kHz. The pulses
propagate to the target, reflect off the target, propagate back to the antenna,
and are collected by the antenna. The antenna operates in a monostatic mode,
receiving only when the transmitter is inactive.

Waveform

To build the waveform described in Basic Radar Workflow Scenario on page
5-3, use phased.RectangularWaveform and set the properties to the desired
values.

hwav = phased.RectangularWaveform('PulseWidth',1e-6,'PRF',5e3,...
'OutputFormat','Pulses','NumPulses',1)

See “Waveforms” for more detailed examples on building waveform models.

Antenna

To model the antenna described in Basic Radar Workflow Scenario on page
5-3, use phased.IsotropicAntennaElement. Set the operating frequency
range of the antenna to [1,10] GHz. The isotropic antenna radiates equal
energy for azimuth angles from -180 to 180 degees and elevation angles from
-90 to 90 degrees.

hant = phased.IsotropicAntennaElement('FrequencyRange',[1e9 10e9])

Target Model

To model the target described in Basic Radar Workflow Scenario on page 5-3,
use phased.RadarTarget. The target has a nonfluctuating RCS of 0.5 square

5-3

5 Basic Radar Workflow

meters and the waveform incident on the target has a carrier frequency of 4
GHz. The waveform reflecting off the target propagates at the speed of light.
Parameterize this information in defining your target.

htgt = phased.RadarTarget('Model','Nonfluctuating','MeanRCS',0.5,...
'PropagationSpeed',physconst('lightspeed'),...
'OperatingFrequency',4e9)

Antenna and Target Platforms

To model the location and movement of the antenna and target in Basic Radar
Workflow Scenario on page 5-3, use phased.Platform.

The antenna is stationary in this scenario and is located at the origin of the
global coordinate system. See “Global and Local Coordinate Systems” for
definitions and conventions regarding global and local coordinates.

The target is initially located at [7000; 5000; 0] and moves with a constant
velocity vector of
[-15;-10;0].

% Antenna location and velocity
htxplat = phased.Platform('InitialPosition',[0;0;0],...

'Velocity',[0;0;0],'OrientationAxes',[1 0 0;0 1 0;0 0 1])
% Target location and velocity
htgtplat = phased.Platform('InitialPosition',[7000; 5000; 0],...

'Velocity',[-15;-10;0])

Use rangeangle to determine the range and angle between the antenna and
the target.

[tgtrng,tgtang] = rangeangle(htgtplat.InitialPosition,htxplat.InitialPos

See “Motion Modeling in Phased Array Systems” for more details on modeling
motion.

Modeling the Transmitter

To model the transmitter specifications, use phased.Transmitter. A
key parameter in modeling a transmitter is the peak transmit power. To
determine the peak transmit power, assume that the desired probability of

5-4

Building The Basic Radar Workflow Model

detection is 0.9 and the maximum tolerable false-alarm probability is 10-6.
Assume that the ten rectangular pulses are noncoherently integrated at the
receiver. You can use albersheim to determine the required signal-to-noise
ratio (SNR).

Pd = 0.9;
Pfa = 1e-6;
numpulses = 10;
SNR = albersheim(Pd,Pfa,10)

The required SNR is approximately 5 dB. Assume you want to set the peak
transmit power in order to achieve the required SNR for your target at a
range of up to 15 kM. Assume that the transmitter has a 20 dB gain. You can
use radareqpow to determine the required peak transmit power.

maxrange = 1.5e4;
lambda = physconst('lightspeed')/4e9;
tau = hwav.PulseWidth;
Pt = radareqpow(lambda,maxrange,SNR,tau,'rcs',0.5,'Gain',20)

The required peak transmit power is approximately 45 kilowatts. To
be conservative, use a peak power of 50 kilowatts in modeling your
transmitter. To maintain a constant phase in the pulse waveforms, set
the CoherentOnTransmit property to true. Because you are operating the
transmitter in a monostatic (transmit-receive) mode, set the InUseOutputPort
property to true to keep a record of the transmitter status.

htx = phased.Transmitter('PeakPower',50e3,'Gain',20,...
'LossFactor',0,'InUseOutputPort',true,'CoherentOnTransmit',true)

See “Transmitter” for more examples on modeling transmitters and “Radar
Equation” for examples involving the radar equation.

Modeling Waveform Radiation and Collection

To model waveform radiation from the array, use phased.Radiator. To
model narrowband signal collection at the array, use phased.Collector. For
wideband signal collection, use phased.WidebandCollector.

In this example, the pulse satisfies the narrowband assumption around
the carrier frequency of 4 GHz. For the value of the Sensor property, use

5-5

5 Basic Radar Workflow

the handle for the isotropic antenna. In phased.Collector, setting the
Wavefront property to 'Plane' assumes the waveform incident on the
antenna is a plane wave.

hrad = phased.Radiator('Sensor',hant,...
'PropagationSpeed',physconst('lightspeed'),...
'OperatingFrequency',4e9)

hcol = phased.Collector('Sensor',hant,...
'PropagationSpeed',physconst('lightspeed'),'Wavefront','Plane',...
'OperatingFrequency',4e9)

Modeling the Receiver

To model the receiver in Basic Radar Workflow Scenario on page 5-3, use
phased.ReceiverPreamp. In the receiver, you specify the noise figure and
reference temperature, which are key contributors to the internal noise of
your system. In this example, set the noise figure to 2 dB and the reference
temperature to 290 degrees kelvin. Seed the random number generator for
reproducible results.

hrec = phased.ReceiverPreamp('Gain',20,'NoiseFigure',2,...
'ReferenceTemperature',290,'SampleRate',1e6,...
'EnableInputPort',true,'SeedSource','Property','Seed',1e3)

See “Receiver Preamp” for more details.

Modeling the Propagation Environment

To model the propagation environment in Basic Radar Workflow Scenario
on page 5-3, use phased.FreeSpace. You can model one-way and
two-propagation by setting the TwoWayPropagation property. In this example,
set this property to false to model one-way propagation.

hspace = phased.FreeSpace('PropagationSpeed',physconst('lightspeed'),..
'OperatingFrequency',4e9,'TwoWayPropagation',false,'SampleRate',1e6)

See “Free Space Path Loss” for more details.

5-6

Building The Basic Radar Workflow Model

Implementing the Basic Radar Model

Having parameterized all the necessary components for the model outlined in
Basic Radar Workflow Scenario on page 5-3, you are ready to generate the
pulses, propagate the pulses to and from the target, and collect the echoes.

The following code prepares for the main simulation loop.

% Time step between pulses
T = 1/hwav.PRF;
% Get antenna position
txpos = htxplat.InitialPosition;
% Allocate array for received echoes
rxsig = zeros(hwav.SampleRate*T,numpulses);

You can execute the main simulation loop with the following code:

for n = 1:numpulses
% Update the target position
tgtpos = step(htgtplat,T);
% Get the range and angle to the target
[tgtrng,tgtang] = rangeangle(tgtpos,txpos);
% Generate the pulse
sig = step(hwav);
% Transmit the pulse. Output transmitter status
[sig,txstatus] = step(htx,sig);
% Radiate the pulse toward the target
sig = step(hrad,sig,tgtang);
% Propagate the pulse to the target in free space
sig = step(hspace,sig,txpos,tgtpos);
% Reflect the pulse off the target
sig = step(htgt,sig);
% Propagate the echo to the antenna in free space
sig = step(hspace,sig,tgtpos,txpos);
% Collect the echo from the incident angle at the antenna
sig = step(hcol,sig,tgtang);
% Receive the echo at the antenna when not transmitting
rxsig(:,n) = step(hrec,sig,~txstatus);

end

5-7

5 Basic Radar Workflow

Noncoherently integrate the received echoes, create a vector of range gates,
and plot the result. The red vertical line on the plot marks the range of the
target.

rxsig = pulsint(rxsig,'noncoherent');
t = unigrid(0,1/hrec.SampleRate,T,'[)');
rangegates = (physconst('lightspeed')*t)/2;
plot(rangegates,rxsig); hold on;
xlabel('Meters'); ylabel('Power');
ylim = get(gca,'YLim');
plot([tgtrng,tgtrng],[0 ylim(2)],'r');

5-8

	toc
	Getting Started with Phased Array System Toolbox Software
	Overview
	Product Overview
	Conventions
	Complex-valued Baseband Signals
	Data Organization of Baseband Signals
	Spatial Coordinates
	Physical Quantities
	Supported Data Types

	Required Products
	MATLAB Compiler Support

	Phased Array Systems
	System Overviews
	Phased Array System Overview
	Radar Phased Array Overview
	Waveform Synthesis
	Physical Components and Environment Modeling
	Array Signal Processing

	Radar Data Cube, Units, and Physical Constants
	Radar Data Cube
	Fast Time Samples
	Slow Time Samples
	Spatial Sampling
	Space-Time Processing
	Organizing Data in the Radar Data Cube
	Reordering the Data Cube

	Units of Measure and Physical Constants
	Units of Measure
	Angles
	Decibels

	Physical Constants

	 System Objects in the Phased Array System Toolbox
	System Objects
	What are System Objects?
	Advantages of Using System Objects
	Creating a System Object
	Changing System Object Properties
	 Modes
	Changing Properties While Running System Objects

	Processing Data with System Objects
	What are System Object Methods?
	The Step Method
	Step Method Examples
	Calculate the steering vector for a uniform linear array
	Calculate the effect of propagating a signal in free space

	Common System Object Methods
	Custom System Object Methods

	Basic Radar Workflow
	Overview of Basic Workflow
	Building The Basic Radar Workflow Model
	Basic Radar Workflow Scenario
	Waveform
	Antenna
	Target Model
	Antenna and Target Platforms
	Modeling the Transmitter
	Modeling Waveform Radiation and Collection
	Modeling the Receiver
	Modeling the Propagation Environment
	Implementing the Basic Radar Model

